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Vector-valued ground motion intensity measures (IMs) are developed and considered for efficiently 
predicting structural response. The primary IM considered consists of spectral acceleration at the 
first-mode structural period along with a measure of spectral shape which indicates the spectral 
acceleration value at a second period. For the IM to effectively predict response, this second period 
must be selected intelligently in order to capture the most relevant spectral shape properties. Two 
methods for identifying effective periods are proposed and used to investigate IMs for example 
structures, and an improvement in the efficiency of structural response predictions is shown. A 
method is presented for predicting the probability distribution of structural response using a vector 
IM while accounting for the effect of collapses. The ground motion parameter ε is also considered as 
part of a three-parameter vector. It is seen that although the spectral shape parameter increases the 
efficiency of response predictions, it does not fully account for the effect of ε. Thus, ε should still be 
accounted for in response prediction, either through informed record selection or by including ε in 
the vector of IM parameters. 

Keywords: intensity measure (IM); spectral shape; dynamic analysis; ground motion hazard; epsilon 
(ε). 

 

1. Introduction 

When assessing response of a structure using dynamic analysis, it is important to identify 
ground motion properties that are related to the resulting structural response. These 
properties are often referred to as ground motion intensity measures, or IMs. Intensity 
measures known to relate to response of nonlinear multi-degree-of-freedom structures 
include elastic response spectral values (i.e., response of elastic single-degree-of-freedom 
structures) and spectral shape, which measures the relative energy in a ground motion at 
multiple periods. In this paper, consideration is given to vector-valued intensity measures 
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consisting of spectral acceleration at the first-mode period of the structure, Sa(T1), plus a 
measure of spectral shape. Vectors of three parameters will also be considered briefly. 
Intuitively, these vectors contain more information about the ground motion than Sa(T1) 
alone and should thus be more effective at predicting the response of a structure. This 
will be confirmed, and criteria for finding an optimal set of IM parameters will be 
described.  

In addition to making response predictions as a function of this vector of parameters, 
probabilistic seismic hazard analysis can be used to calculate the rates of occurrence of 
ground motions with a range of ground motion intensities. The rates of occurrence of 
ground motions can then be coupled with associated structural response predictions to 
compute the annual frequency of exceeding a given level of structural response. An 
example of this procedure is seen in the work of the Pacific Earthquake Engineering 
Research (PEER) Center [Cornell and Krawinkler 2000]. Here, the response of a 
structure is termed an Engineering Demand Parameter, or EDP. The annual frequency of 
exceeding a given EDP is calculated as  

 
all 

( ) ( | ) ( )
i

EDP i IM i
x

z P EDP z IM x xλ λ= > = ⋅Δ∑  (1.1) 

where λEDP(z) is the annual frequency of exceeding a given EDP value z, λIM(xi) is the 
annual frequency of exceeding a given IM value xi (commonly referred to as a ground 
motion hazard curve), and ΔλIM(xi) = λIM(xi) - λIM(xi+1) is approximately the annual 
frequency of IM = xi. The final element of this equation is P(EDP > z|IM = xi), the 
probability of exceeding a specified EDP level, given a level of IM. The result from Eq. 
(1.1) is important because it directly indicates the safety of a structure in terms of 
response levels. Performance-based engineering assessments proposed by the PEER 
Center are based on this calculation. To make this structural response prediction more 
efficiently using a vector IM, the calculation must be generalized as discussed below. 

Given that Sa(T1) has been verified as a useful predictor of structural response for a 
wide class of structures [e.g., Shome et al. 1998], it will be incorporated here in all 
considered vectors. The parameter RT1,T2 = Sa(T2) / Sa(T1) will be used to measure 
spectral shape. This parameter, illustrated in Figure 1, has also been found by others to be 
a useful predictor of structural response [Cordova et al. 2001, Vamvatsikos and Cornell 
2005]. Together, Sa(T1) and RT1,T2 define two points on a ground motion’s response 
spectrum. A range of possible T1 values were considered, and the first-mode elastic 
period of the structure was seen to be an effective choice for most considered cases. 
Therefore, T1 will be fixed at the first-mode structural period, with T2 then chosen to 
effectively predict the response of the structure.  

Choice of T2 for a given analysis situation will be discussed, using two 
complementary criteria. A method for prediction of structural response using a vector IM 
is also developed for use here and for more general applications. Vectors consisting of 
three parameters will also be considered, in order to determine whether further addition 
of IM parameters results in additional prediction efficiency gains. The ground motion 
parameter ε, seen to be an effective IM parameter in previous work [Baker and Cornell 
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2005a], is considered to determine whether it accounts for spectral shape in a manner 
similar to RT1,T2. 

 

2. Prediction of Structural Response Using a Scalar IM  

A method is presented here for obtaining the structural response prediction 
P(EDP>z|IM=xi) used in (1.1). The method will be generalized later for use with vector 
IMs. The method used here requires a suite of earthquake records, all at the same IM 
value Sa(T1)=x; in this study, 40 records are used at each IM level. The target Sa(T1) level 
is obtained by scaling the amplitudes of a suite of historical earthquake records so that 
they have the appropriate Sa(T1) value [e.g., Shome et al. 1998]. Here the same records 
are used for all Sa(T1) levels, although one can use different records at various levels if 
probabilistic seismic hazard analysis (PSHA) disaggregation suggested that important 
record properties were changing [Baker and Cornell 2006a]. The suite of n records is 
used to perform nonlinear dynamic analysis on a model of the structure, resulting in n 
corresponding values of EDP. Because EDP values vary from record to record, EDP 
given Sa(T1)=x can be modeled as a random variable with an unknown distribution, with 
n samples from the distribution obtained from dynamic analysis. The distribution must 
then be estimated from these samples in order to calculate the probability that EDP will 
be greater than a given value at the specified Sa(T1) level.  

The distribution of responses, accounting for collapses, is obtained using the method 
of Shome and Cornell [2000]. The records causing collapse at the given Sa(T1) level (as 
indicated by extreme deformations causing non-convergence of the dynamic analysis 
algorithm), are used to estimate the probability of collapse, denoted C 

 ( )1
number of records causing collapse| ( )

total number of records
P C Sa T x= =  (2.1) 

The remaining non-collapse responses have been found to be well represented by a 
lognormal distribution, at least for the maximum interstory drift ratio response parameter 
considered here [Shome 1999, Aslani and Miranda 2003]. Thus the natural logarithm of 
EDP is normally distributed, and the parameters for this distribution can be estimated 
using the method of moments [Benjamin and Cornell 1970]. The probability that EDP 
exceeds z given Sa(T1) = x is 

 ( ) 1

1

ln | ( )
1

ln | ( )

ˆln
| ( ) , 1 ˆ

EDP Sa T x

EDP Sa T x

z
P EDP z Sa T x C

μ

β
=

=

⎛ ⎞−
⎜ ⎟> = = −Φ
⎜ ⎟
⎝ ⎠

 (2.2) 

where 
1ln | ( )ˆ EDP Sa T xμ =  and 

1ln | ( )
ˆ

EDP Sa T xβ =  are the sample mean and standard deviation, 
respectively, of the non-collapse lnEDP results, ( )Φ ⋅  denotes the standard normal 
cumulative distribution function, and C  denotes ‘no collapse.’ Combining (2.1) and (2.2) 
using the total probability theorem, the probability of EDP exceeding z given Sa(T1) = x 
is  
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 (2.3) 

Where ( ) ( )1 1| ( ) 1 | ( )P C Sa T x P C Sa T x= = − = . This result is used in (1.1), and will be 
generalized for vector IMs in the next section. 
 

3. Prediction of Structural Response Using a Vector IM 

A result similar to Eq. (2.3) can be developed for use with a two-element vector IM. A 
vector consisting of Sa(T1) and RT1,T2 is used here to estimate 

1 1 1, 2 2( | ( ) , )T TP EDP z Sa T x R x> = = , but the approach can be used with any IM parameters 
of interest. A direct generalization of the above procedure would be to scale the suite of 
records such that Sa(T1) = x1 and RT1,T2 = x2. Simple amplitude scaling, however, affects 
all response spectral values equally and leaves spectral shape unmodified; therefore, 
RT1,T2 is unchanged by scaling. It is in general not possible to match two IM parameters 
simultaneously by scaling the amplitude of a ground motion, because only a single scale 
factor can be specified. Modification of the frequency content of the ground motions 
could allow for the matching of spectral shape, but it would need to be verified that the 
resulting response estimates realistically represent the responses of unmodified records 
with the same spectral shape. The approach used here, instead, is to scale to Sa(T1) as 
before and then apply regression analysis to estimate EDP as a function of RT1,T2 at each 
Sa(T1) level. As with the scalar IM case, the records causing collapse are dealt with 
separately, and a probability distribution is fit to the remaining non-collapse responses. 

As with the scalar IM, some records may cause collapse of the structure. Instead of 
merely counting the fraction of records that collapse, however, it is now possible to 
predict the probability of collapse at a given Sa(T1) level by making the prediction a 
function of RT1,T2 using logistic regression, which is a commonly used tool for predicting 
binary outcomes [Neter et al. 1996]. If the occurrence of collapse, C, is treated as a binary 
variable equal to 1 if the ground motion causes collapse and 0 otherwise, then the 
probability of collapse can be predicted as  

 ( ) 0 1 2
1 1 1, 2 2

0 1 2

ˆ ˆexp( ln )
| ( ) , ˆ ˆ1 exp( ln )T T

x
P C Sa T x R x

x
β β
β β
+

= = =
+ +

 (3.1) 

where the coefficients 0β̂  and 1̂β  are estimated using logistic regression on a dataset 
with records scaled to Sa(T1) = x1. Example data and the resulting fitted prediction are 
shown in Figure 2.  

The distribution of non-collapse responses is also modeled using regression analysis. 
It has been observed that the expected value of EDP tends to be well-predicted by the 
function  
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 1 1 1, 2 2 2 3 2
ˆ ˆln | ( ) , , lnT TE EDP Sa T x R x C xβ β⎡ ⎤= = = +⎣ ⎦  (3.2) 

where linear regression is used to obtain estimates of the coefficients, 2β̂  and 3β̂  at the 
given Sa(T1) level. Graphical examples of this data and regression fits are shown in 
Figure 3. Using this mean prediction, regression residuals are defined as 

 ˆln lni i ie EDP EDP= −  (3.3) 

where ln iEDP  is the natural logarithm of the EDP associated with record i, and ˆln iEDP  
is the prediction from (3.2), based on the record’s RT1,T2 value. These residuals are 
assumed to be mutually independent when tests of statistical significance are performed 
later. In addition, the residuals will be assumed to be normally distributed with constant 
variance (a condition termed homoscedasticity). These assumptions have been examined 
for the data in this study, and found to be reasonable. The linear regression prediction of 
(3.2) is unbiased, so the mean value of the residuals is zero [Neter et al. 1996]. The 
estimated variance of the residuals, denoted 2ˆ ˆ[ ] eVar e σ≡ , is available from the regression 
software and is represented graphically in Figure 3 by superimposing the estimated 
normal distributions of the residuals over the data. 

Given the predictive model of (3.2), and given the assumed statistical properties of 
the residuals, the probability that lnEDP is greater than z, given Sa(T1) = x1, RT1,T2 = x2, 
and no collapse can be expressed as 

 ( ) ( )2 3 2
1 1 1, 2 2

ˆ ˆln ln
| ( ) , , 1

ˆT T
e

z x
P EDP z Sa T x R x C

β β

σ

⎛ ⎞− +
⎜ ⎟> = = = −Φ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.4) 

This equation is similar to (2.2) used in the scalar case, except that the mean of the 
normal distribution now comes from the regression prediction based on RT1,T2 rather than 
the average response of all records. The standard deviation of the records has also been 
replaced by the standard deviation of the regression residuals. 

The collapse and non-collapse response predictions from (3.1) and (3.4) can then be 
combined to compute the probability that EDP exceeds z 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 2
1 1 1, 2 2

0 1 2

0 1 2

ˆ ˆln ln
| ( ) , 1

ˆ

ˆ ˆexp( )
where  and 1ˆ ˆ1 exp( )

T T
e

z x
P EDP z Sa T x R x P C P C

x
P C P C P C

x

β β

σ

β β
β β

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟> = = = + −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+
= = −

+ +

 (3.5) 

Although x1 does not appear in (3.5), the equation is implicitly a function of x1 because 
the data used to estimate 0 1 2 3

ˆ ˆ ˆ ˆ ˆ, , ,  and eβ β β β σ  comes from records scaled to Sa(T1)=x1. 
This response prediction is similar to the original prediction of (2.3), but now 
incorporates a two-element vector. The approach is easily generalized to vectors with 
more parameters by using regression with multiple predictor variables in (3.1) and (3.2), 
as will be done in Section 8. 
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4. Building Models and Ground Motions  

Several structural models are used to investigate the effectiveness of vector IMs. The 
primary structure is a 1960’s era reinforced concrete moment frame building that is 
serving as a test-bed for PEER Center research activities [PEER 2004]. A 2D model of 
the transverse frame is used, which was created by Jalayer [2003] and contains nonlinear 
elements that degrade in strength and stiffness, in both shear and bending [Pincheira et al. 
1999]. The frame has seven stories and three bays. The first mode of the model has a 
period of 0.8 seconds, and the second mode has a period of 0.28 seconds. The response 
parameter studied here, maximum interstory drift ratio, is primarily controlled by first-
mode response in this structure. Forty historical earthquake ground motions are used for 
the analysis of the structure [Baker and Cornell 2005b, Table A.1]. The records come 
from California earthquakes ranging in Magnitude from 5.7 to 7.3, and ranging in 
distance from 6.5 to 56 km. Attempts were made to avoid directivity effects by choosing 
records with small distances only when the rupture and site geometry suggested that near-
fault effects would be unlikely, and when velocity time histories were not observed to 
contain pulse-like intervals.  

To supplement the results from the primary structure, twenty generic frame models 
were also analyzed, with a variety of configurations, periods, and degradation properties. 
The specific model parameters are summarized in Table 1. The structures are single-bay 
frames, with stiffnesses and strengths chosen to be representative of typical structures. A 
set of non-degrading models designed and analyzed by Medina and Krawinkler [2005] 
was considered. These models do not have degrading elements, but can still collapse due 
to P-Δ effects. Another set of structures were considered that are identical to the models 
of Medina and Krawinkler except that they incorporate elements that degrade in stiffness 
and strength [Ibarra 2003, Ibarra et al. 2005]. For each of six building configurations, a 
non-degrading model and two degrading models were considered. For the supplemental 
generic structures, a different set of 40 records was used for analysis, ranging in 
magnitude from 6.5 to 6.9 and in distance from 13 to 40 km [Medina and Krawinkler 
2003]. The cited authors refer to these records as the LMSR-N set.  
 

5. Choice of T2 Based on Regression Residuals 

With a method to predict structural response and example structures for testing, it is now 
possible to consider the selection of an effective vector of ground motion parameters for 
use in prediction. The general goals to be considered when choosing an IM are efficiency 
(minimum variance in EDP for records with the same IM value), sufficiency [Luco and 
Cornell 2005], and ease of calculation (e.g., it should be possible to obtain the ground 
motion hazard for the IM, or to determine the IM value of a given record).  

Sufficiency of an IM parameter implies that given knowledge of the IM value of a 
ground motion, structural response is not sensitive to other ground motion parameters of 
interest. The scalar intensity measure Sa(T1) has been found to be a sufficient predictor 
with respect to magnitude and distance [Shome et al. 1998]. This implies that among 
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ground motions with the same Sa(T1) value, the magnitude and distance values of the 
ground motions will not affect the estimated structural response. Sufficiency is a 
desirable property of an IM, because the estimated structural response will not be affected 
by the specific ground motions used for analysis. Although Sa(T1) is sufficient with 
respect to magnitude and distance, Baker and Cornell [2005a] found it to be insufficient 
with respect to ε (a ground motion parameter that will be discussed later). The vector of 
Sa(T1) plus the added parameter RT1,T2 retains sufficiency with respect to magnitude and 
distance, and its sufficiency with respect to ε will be considered in Section 8. Regarding 
the ease of calculation, the ground motion hazard for this IM can be computed [Bazzurro 
and Cornell 2002], and spectral acceleration values are easy to calculate and familiar to 
many engineers. With the sufficiency and ease of calculation criteria addressed, T2 will 
thus be selected based on efficiency.  

The question of efficiency arises when, for example, the mean value of lnEDP is 
considered. A basic result in statistics states that if one has n samples from a distribution 
with standard deviation σ , the standard deviation of the sample mean is proportional to 

nσ  [Benjamin and Cornell 1970]. Thus, if ln |EDP IM xβ =  can be decreased by using a 
more efficient IM, then n (the number of dynamic analyses performed to obtain response 
results) can be decreased while estimating the mean lnEDP with the same confidence. 
This will reduce the effort and computational expense associated with the assessment 
procedure. In Figure 3a and b, RT1,T2 parameters producing small and large residual 
dispersions, respectively, are shown. Clearly fewer data points will be needed to obtain 
an estimate of lnEDP as a function of IM when using the efficient RT1,T2 from Figure 3a. 

This is the motivation for the first method of identifying the optimal T2 value at a 
given Sa(T1) level. Once dynamic analyses have been performed using records scaled to a 
target Sa(T1), it is a simple matter to perform regression analysis using RT1,T2 for a range 
of T2 values and compute the standard deviations of the resulting residuals. To measure 
the benefit of the vector IM relative to Sa(T1), the fractional reduction in the standard 
deviation of the prediction errors relative to the standard deviation from the case with 
Sa(T1) alone can be computed. The T2 causing the largest fractional reduction will be 
identified as optimal under this criterion. 

 

6. Optimal T2 Results Based on Regression Residuals 

Using the primary test structure and associated ground motions, candidate T2 values for 
RT1,T2 can be evaluated. A plot of the fractional reduction in residual standard deviation is 
shown in Figure 4, where all records have been scaled to Sa(T1) = 0.3g. The optimal T2 is 
one second (i.e., T2/T1 = 1.25), and the reduction in dispersion is approximately 60%. 
Note that this optimal T2 at this spectral acceleration level was used to create Figure 3a, 
and a less effective T2 was used for Figure 3b. Using the rule that the standard deviation 
of the sample mean is nσ , a 60% reduction in standard deviation indicates that the 
number of records analyzed could be potentially reduced by a factor of six while 
maintaining the same confidence in the mean estimate, leading to a great reduction in 
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computational expense. This T2 value is associated with a single level of Sa(T1). The 
same calculation can be repeated at other levels, and results for two additional levels of 
Sa(T1) are shown in Figure 5, where it is apparent that the optimal T2 value varies 
depending on the level of Sa(T1). An additional value, μ , is given in the legend. This is 
the ratio of the geometric mean maximum interstory drift ratio among the 40 responses to 
the maximum interstory drift ratio at yielding (as determined from a pushover analysis of 
the structure), and is analogous to a ductility level for the structure.  

At Sa(T1) = 0.1g the optimal T2 is 0.36 seconds, and at 0.28 seconds—the second-
mode period of the structure—the reduction in dispersion is nearly as large. A vector IM 
with T2 equal to the structure’s second-mode period is related to the modal analysis 
method of estimating linear response, which uses spectral acceleration at elastic modal 
periods to estimate structural response. At this level of spectral acceleration, μ  is 0.533, 
implying that the structure stays linear for most of the records. For Sa(T1) = 0.3g, the 
optimal T2 is 1.0 seconds as discussed above. It is noted now that 1.56μ = , suggesting 
that most of the records cause some level of nonlinear behavior in the structure. For 
Sa(T1) = 0.7g, the optimal T2 is 1.5 seconds. At this level of spectral acceleration, 

4.66μ = . This indicates that most of the records experience large levels of nonlinearity. 
Other authors have examined the choice of T2 for similar applications, and have also 
recognized the dependence on the level of nonlinearity [Cordova et al. 2001, 
Vamvatsikos and Cornell 2005]. 

In Figure 6, the level of Sa(T1) is plotted versus the ratio of T2 to T1. Circles indicate 
the optimal T2 for a given Sa(T1) and vertical lines indicate the range of T2/T1 where the 
reduction in dispersion is at least 75% of the reduction seen at the optimal T2. These lines 
are shown to indicate whether there are only a few effective T2 values or whether there is 
a large range of T2 values that reduce dispersion comparably.  

The structure’s μ  is less than one for Sa(T1) between 0 and 0.1g, and there the 
optimal T2 is near the second-mode period of the building. For Sa(T1) ≥ 0.2g, where 

1μ > , the optimal T2 is larger than T1 and shows an increasing trend as Sa(T1) increases 
(and levels of nonlinearity increase). The dependence of T2 on the level of nonlinearity is 
similar to the concepts from equivalent linear systems, where a nonlinear single-degree-
of-freedom system is represented by an ‘equivalent’ linear system with a lengthened 
period. As the level of nonlinearity increases, the period of the equivalent linear system 
increases. Predictions of equivalent periods for nonlinear systems based on level of 
nonlinearity have been proposed by, for example, Iwan [1980] and Kennedy [1985]. 
These predictions show trends similar to the effective T2’s seen in this study, as 
illustrated in Figure 6. There is one difference, however, between the period of an 
equivalent linear system and the T2 being selected for use in a vector IM. An equivalent 
linear system is used to replace Sa(T1), while here the IM2 is used to supplement Sa(T1). 
This discrepancy is seen in Figure 6 when Sa(T1) is 0.3 or 0.4g. Here the equivalent 
nonlinear system has a period almost identical to the elastic period of structure, while the 
optimal T2 from this study is at a longer period. This is because if T2 is near to T1, then 
Sa(T1) is highly correlated with Sa(T2) [Baker and Cornell 2006b]; RT1,T2 = Sa(T2) / Sa(T1) 
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is thus essentially constant for all records and so provides little useful information. The 
optimal T2 must differ significantly from T1 in order to decrease the correlation between 
Sa(T1) and Sa(T2). This is apparent in Figure 5, where the fractional reduction in 
dispersion is always very low for T2 values close to T1. So although there is some 
similarity between optimal T2 values for this vector IM and periods of equivalent linear 
systems, the two concepts differ, especially at low levels of nonlinearity. 

The same search for optimal periods was performed with the generic frame structures. 
Because these structures have differing first-mode periods and yield Sa levels, Sa(T1) is 
normalized to allow uniform display of the results. Here the Sa(T1) level is chosen so that 
the records’ Sa(T1) level in units of g is a specified multiple of the structure’s base shear 
coefficient γ (where γ=yield base shear/weight). The ratio Sa(T1) / γ is analogous to an R-
factor in present building codes, if there were no overstrength in the structure; here it will 
be referred to as Rμ. With this measure, nonlinear behavior starts occurring at an Rμ value 
of approximately one for all structures, although higher-mode response will alter the 
exact point of yielding somewhat [Medina and Krawinkler 2003]. Further, the optimal T2 
is normalized by the first-mode period of the structure as was done in Figure 6. These 
normalizations allow multiple structures to be plotted on the same figure for comparison, 
independent of their first-mode period or yield strength. The structures are separated into 
four groups for consideration. 

The first group, shown in Figure 7a, consists of three-story structures with peak 
interstory drift ratios controlled primarily by first-mode response. Here the optimal T2 is 
in many cases near to the second-mode period of the structure when the structure is linear 
(Rμ <1) or slightly nonlinear. In the moderately nonlinear range, however, the optimal 
period is typically larger than the first-mode period and increases as the ground motion 
intensity increases. The general trends in Figure 7a are similar to the trend in Figure 6. 
The second group of structures, shown in Figure 7b, have peak interstory drift ratios that 
are moderately sensitive to second-mode response. In the linear range, the optimal T2 is 
again near the second-mode period. Here, however, the optimal T2 is near the second-
mode period for normalized Sa values up to four in several cases. The third group of 
structures, shown in Figure 7c, have peak interstory drift ratios that are significantly 
affected by second-mode response—more-so than most typical buildings [Helmut 
Krawinkler, personal communication 2005]. Here the optimal T2 is almost always near 
the second-mode period. The final group of structures, shown in Figure 7d, all have nine 
stories and a first-mode period of 0.9 seconds, but have varying ductility capacities 
(δc/δy). Each of these structures undergoes a transition from having an optimal T2 less 
than T1 to having an optimal T2 greater than T2 at an Rμ factor between 3.5 and 6.5. The 
structures with lower ductility capacity undergo this transition at a lower Rμ level; this is 
likely because structures with low ductility are more sensitive to long-period excitations 
that may drive them to extreme responses. Ductile structures may be more able to 
withstand these long-period excitations, and thus information about higher mode 
response may be more important in this transition region. At large enough Sa levels, all 
four of these structures are sensitive to long-period T2’s; the low-ductility structures 
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merely make the transition sooner. It is interesting to note that for several of the 
structures in Figure 7b-d, the optimal T2 in the nonlinear response range is less than T1 
but larger than the elastic second-mode period. This suggests that the effective second-
mode period may be lengthening due to nonlinearity [Fu 2005], although no further 
analysis was performed to confirm this. 

Some general conclusions might be inferred from these empirical results. When the 
structure is significantly affected by second-mode response (i.e., either the structure is 
behaving linearly or second-mode response is a strong contributor to response even in the 
nonlinear range), then the optimal T2 is typically near the elastic second-mode period. 
When the structure is behaving nonlinearly and second-mode response is not critical, the 
optimal T2 is typically larger than the elastic first-mode period. In addition, low-ductility 
structures may have optimal T2 values longer than the first-mode period at lower Sa 
levels than high ductility structures. These trends are all consistent with engineering 
intuition about dynamic structural response, but the observed results are not yet general 
enough to develop concrete rules for optimal T2 values. A rule-of-thumb approach based 
on the results here might be to use a T2 equal to the second-mode period when second 
mode response is most important, and to use a T2 equal to twice the first-mode period 
when nonlinear response is expected to be important. 

It is helpful to reconsider the initial scheme for predicting EDP as a function of two 
IM parameters, in light of the previous results. There are a variety of methods for making 
this prediction [Baker 2007], but here the choice was made to first scale records to Sa(T1) 
and then regress on RT1,T2. The regression coefficients vary at each Sa(T1) level, allowing 
for full interaction between Sa(T1) and RT1,T2. If regression predictions had been made 
using un-scaled records with both Sa(T1) and RT1,T2 as predictors, it would have been 
more difficult to identify the interaction between the two parameters. In addition, 
simultaneous regression on both Sa(T1) and RT1,T2 eliminates the possibility of studying 
how the optimal T2 varies as a function of Sa(T1). For these two reasons, scaling to Sa(T1) 
and then regressing on RT1,T2 was chosen as the preferred approach here. The advantage 
of regressing on two IM parameters simultaneously, as was done by Shome [1999], is 
that there are fewer parameters to estimate. Only one set of coefficients is needed for the 
entire range of Sa(T1) and RT1,T2, rather than a new set of coefficients for RT1,T2 at each 
Sa(T1) stripe, potentially reducing the number of analyses needed for parameter 
estimation. Thus, the simultaneous regression approach may be appealing for practical 
applications, but the approach used here was deemed more useful for exploratory 
research. 

 

7. Choice of T2 Using the Bootstrap and the Drift Hazard Curve  

The methodology used thus far for choosing an optimal RT1,T2 has one weakness. Recall 
that the quantity being optimized in Figure 4 is the reduction in residual dispersion from 
regression on the non-collapse responses. The ability of RT1,T2 to predict the probability of 
collapse is not measured. Because of this, the plot of Figure 6 was limited to Sa(T1) ≤ 1g. 
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When Sa(T1) > 1g, more than one-quarter of the ground motions cause this structure to 
collapse, so a criterion based solely on non-collapse responses is not appropriate. Ideally, 
the quantity to optimize should account for improvements made in prediction of both 
collapse and non-collapse responses.  

A natural way to resolve this issue is to carry the prediction of EDP through to the 
computation of the rate of exceeding an EDP value z, as discussed in the introduction. 
This result is sometimes referred to as a drift hazard curve. The vector version of (1.1) is 
given by 

 ( ) ( )
1, 2,

1 1, 1, 2 2, 1, 2,
all all 

( ) | ( ) , ,
i i

EDP i T T i IM i i
x x

z P EDP z Sa T x R x x xλ λ= > = = ⋅Δ∑ ∑  (7.1) 

The estimate will vary depending upon the records chosen for analysis, although with an 
efficient IM the estimate will not vary by much. Thus, a reduction in sensitivity to the 
records chosen here would be a good criterion to use in selecting RT1,T2. This criterion 
addresses both the efficiency and sufficiency issues described earlier, as well as 
accounting for collapse and non-collapse responses. To measure the statistical variability 
of the estimate of λEDP(z), one can employ the bootstrap [Efron and Tibshirani 1993]. 
This procedure is performed as follows: select n records with replacement from the 
original set of n records (some records will be duplicated and others not present at all). 
With the new set of records and their previously calculated associated responses, use a 
vector IM with the candidate RT1,T2 to predict the building response as before. Using the 
new estimate, re-compute λEDP(z) using (7.1). Repeat this process B times (typically 25 to 
200). The standard deviation of these B values is an estimate of the standard error of 
estimation of λEDP(z). No new structural analyses are needed for this process, so the 
computational expense is not large. A good T2 value for RT1,T2 will result in a λEDP(z) with 
significantly reduced variability relative to the λEDP(z) calculated with Eq. (1.1) using a 
scalar IM. There are two advantages introduced by this method. First, it incorporates both 
the collapse and non-collapse predictions naturally into the final computation where the 
results will be used. Second, this criterion measures efficiency gains over the entire range 
of Sa(T1) values that are related to the given EDP level, rather than at just a single Sa(T1) 
value. Note that this calculation requires the ability to perform a vector-valued ground 
motion hazard analysis to determine 

1 1, 1, 1 1, 2 2, 2, 11, 2, ( ) [ , ], [ , ]( , )
i i T T i iIM i i Sa T x x R x xx xλ λ

+ +∈ ∈Δ = . This 
result can be approximately thought of as the annual rate of Sa(T1) = x1,i and RT1,T2 = x2,i. 
This type of hazard analysis can be computed [Bazzurro and Cornell 2002, Somerville 
and Thio 2003], but is not yet widely used in engineering practice.  

To illustrate this concept, the complete drift hazard curve λEDP(z) is computed using 
the scalar and vector procedures (Eq. (1.1) and (7.1) respectively). The ground motion 
hazard is calculated for the actual location of the structure being studied (a stiff-soil site 
near Los Angeles, California). The scalar and vector-based results are shown in Figure 8. 
Note that the flattening of the curve towards the right occurs because the exceedance of 
these EDP values is dominated by collapses (P(C) ≅ 0.003). There is not a large 
difference between the two curves, but what cannot be seen in this figure is that there is 
much less uncertainty in the curve estimated using the vector IM. This uncertainty can be 
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measured using the bootstrap. The vector-IM-based drift hazard curves computed from 
four example bootstrap replicates are shown in Figure 9. The variability among the 
bootstrapped drift hazard estimates indicates the degree to which the result is sensitive to 
the records selected, due to a lack of efficiency or sufficiency in the IM. The coefficient 
of variation of 200 bootstrapped curves is computed for a range of EDP levels using 
several IMs, and shown in Figure 10. The vector consisting of Sa(T1) and RT1,T2, with T2 = 
1.0s, produces a significant reduction in coefficient of variation for nearly all levels of 
IM, with a 50% reduction in the range 0.003 < EDP < 0.01. The other two vectors do not 
show a significant improvement. This result fits with results seen earlier. The vector with 
T2 = 0.28s was only helpful for very small levels of Sa(T1), as seen in Figure 6. The 
vector with T2 = 2.0s was helpful as Sa(T1) levels got very large, but these large-intensity 
events are rare enough that they do not significantly affect the EDP hazard curve except 
at large levels of EDP. The vector with T2 = 1.0s showed an improvement over a large 
range of important Sa(T1) levels, and thus appears to be the most useful here. These 
bootstrap-based results are consistent with the earlier results, but perhaps this method 
reveals more information about the overall usefulness of a candidate vector than the 
previous method. Note that the best vector may depend upon the EDP level of interest, 
whereas previously the best vector was conditional upon the Sa(T1) level. 

This bootstrap procedure requires more computational effort than the regression 
procedure, but it has the advantage of directly measuring uncertainty in the parameter of 
great interest, λEDP(z), and incorporating estimates from both collapse and non-collapse 
prediction at multiple IM levels simultaneously. Research to date seems to indicate that 
the two alternative procedures identify similar T2 values at levels of EDP where collapses 
are not frequent.  
 

8. A Three-Parameter Vector Consisting of Sa(T1), RT1,T2 and ε 

The ground motion parameter ε has been a subject of recent investigations [Baker and 
Cornell 2005a, 2006a], and has been found to predict structural response given 
knowledge of Sa(T1). This parameter is a measure of the difference between a ground 
motion’s Sa(T1) value and the mean Sa(T1) from a ground motion prediction equation. 
Records with positive ε values tend to have ‘peaks’ in their spectra at the specified 
period, and negative ε values are associated with ‘valleys.’ This means that ε is an 
indicator of spectral shape, and explains why it predicts structural response. Because ε 
and RT1,T2 both relate to spectral shape, the possibility exists that they are accounting for 
the same effect. If they do account for the same effect, then use of a vector with RT1,T2 
would eliminate the need to carefully account for the effect of ε. A vector consisting of 
three parameters—Sa(T1), RT1,T2 and ε—is used to investigate this possibility. The 
question to be answered is whether this three-parameter IM is better than the two-
parameter IM consisting of Sa(T1) and RT1,T2. To test this, we first perform scaling on 
Sa(T1) stripes, as in Section 3. The only modification needed is that the regressions now 
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use two predictor variables. The prediction of collapse is analogous to (3.1), but now with 
an added term for ε  

 ( ) 0 1 2 2 3
1 1 1, 2 2 3

0 1 2 2 3

ˆ ˆ ˆexp( ln )
| ( ) , , ˆ ˆ ˆ1 exp( ln )T T

x x
P C Sa T x R x x

x x
β β β

ε
β β β
+ +

= = = =
+ + +

 (8.1) 

The prediction of mean response of non-collapse records is performed using the function 

 1 1 1, 2 2 3 3 4 2 5 3
ˆ ˆ ˆln | ( ) , , , lnT TE EDP Sa T x R x x C x xε β β β⎡ ⎤= = = = + +⎣ ⎦  (8.2) 

where the coefficients 0β̂  through 5β̂  are again estimated using a dataset with records 
that have been scaled to Sa(T1) = x1. These results are then combined in a manner similar 
to that of (3.5), and the drift hazard is computed using  

 
1, 2, 3,

1 1, 1, 2 2, 3,

1, 2, 3,all all all 

( | ( ) , , )
( )

 ( , , )
i i i

i T T i i
EDP

IM i i ix x x

P EDP z Sa T x R x x
z

x x x
ε

λ
λ

> = = =⎡ ⎤
= ⎢ ⎥⋅Δ⎣ ⎦
∑ ∑ ∑  (8.3) 

The three-parameter ground motion hazard and the three-parameter IM response 
prediction have both been computed for the first time as part of this study.  

To determine whether the predictions incorporating ε are significantly superior to 
predictions that do not include ε, a statistical test known as the F-test is used [Neter et al. 
1996]. For a given structure and Sa(T1) level, both the full model incorporating RT1,T2 and 
ε (Eq. (8.1) and (8.2)) and the reduced model without ε (Eq. (3.1) and (3.2)) are fitted. A 
measure of the improvement in fit from the reduced model to the full model, called an F 
statistic, is computed. The probability of exceeding that F statistic under the assumption 
that ε is not significant is called a p-value. Low p-values suggest that the effect of ε is 
significant, because they indicate that the observed level of improvement in fit is unlikely 
to occur under the assumption that ε is not significant. A p-value of less than 0.05 is 
typically interpreted as indicating that ε has a statistically significant effect. P-values 
from a subset of the test results are displayed in Table 2. In all, approximately 25% of the 
tests show p-values below 0.05, versus the expected 5% under the assumption that ε is 
not significant. This suggests that ε is still a mildly significant predictor of structural 
response as a third parameter in addition to Sa(T1) and RT1,T2. Note that among the results 
with approximately linear (Rμ ≤ 1) response, ε is very significant for the 0.6s and 0.9s 
structures when T2 is chosen to be longer than the first-mode period of the building. 
When T2 is chosen at the second-mode period of the building, ε is no longer significant 
for these same structures. This suggests that ε is predicting response of the second mode: 
ε is only significant if the RT1,T2 is not chosen to account for the second-mode response. 
The same effect is not present with the 0.3 second structure, perhaps because the second 
mode of this structure does not contribute significantly to response. 

Drift hazard curves computed using several candidate IMs are shown in Figure 11. 
The IMs including ε as a parameter produce lower estimates of the mean annual rate of 
exceedance at large maximum interstory drift ratios. Because the addition of ε to the IM 
affects the drift hazard results, it can be inferred that RT1,T2 is not fully accounting for the 
effect of ε. 
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The ability of RT1,T2 and ε to predict spectral shape at a range of periods is shown in 
Figure 12. The procedure used to create this plot is as follows. Forty ground motions 
were scaled so that they all had the same Sa(0.8s) value. The parameters ε and RT1,T2 were 
then used to predict spectral acceleration values at a range of periods using linear 
regression. The standard deviations of the prediction residuals were compared to the 
standard deviation of the spectral values before prediction to indicate the ability of the IM 
parameters to explain variations in the response spectrum. RT1,T2 by definition explains 
100% of the variation at the period T2 (1 sec. in this figure), and at other periods it has a 
lesser predictive ability. In particular, RT1,T2 with this T2 > T1 has almost no predictive 
power at periods less than T1, as might be expected. On the other hand, ε has at least 
some predictive power over almost the entire range of periods considered. Judging from 
this figure, it appears that ε and RT1,T2 are not explaining the same features of spectral 
shape. In particular, ε predicts spectral values on either side of T1, while RT1,T2 predicts 
only on one side. This may explain why the predictions based on the three-parameter 
vector of Sa(T1), RT1,T2 and ε are different than the predictions based on Sa(T1) and RT1,T2. 
Additionally, unpublished research by the authors indicates that when the median spectral 
shape of the records used for structural analysis is inconsistent with the spectral shape 
predicted by the ground motion prediction (attenuation) model used for hazard analysis, 
an inconsistency in the resulting drift hazard is introduced. This may explain the 
discrepancy between the two-parameter and three-parameter drift hazard curves in Figure 
11. Further investigation is needed into this phenomenon, however, before firm 
conclusions can be drawn. 

Using the bootstrap procedure, the coefficients of variation were computed for each 
drift hazard curve in Figure 11; the results are shown in Figure 13. Interestingly, the 
coefficients of variation of λEDP(z) increase somewhat when ε is included as an IM 
parameter. The ε-based predictions normally require some extrapolation, because mean ε 
values for randomly selected ground motions are near zero while ground motion 
intensities of interest for safety assessment are often caused by ground motions with ε 
values of one to two, at least in seismically active regions such as the California site 
considered here [Baker and Cornell 2005a]. This extrapolation, as well as the need to 
estimate additional regression coefficients, introduces additional model uncertainty into 
the predictions; it appears that the reduction in standard deviation of response residuals 
achieved by ε (a lesser reduction than is achieved by RT1,T2) is not large enough to offset 
this increase in model uncertainty. 

Although ε slightly increases the coefficient of variation of estimation for of the drift 
hazard curve when used in an IM, it has also been seen to eliminate a source of bias 
associated with use of Sa(T1) alone [Baker and Cornell 2005a]. This is the reason why the 
drift hazard curves in Figure 11 that incorporate ε are lower. The parameter RT1,T2 by 
itself is not able to eliminate this bias, so it still suggested that ε be included in 
probabilistic performance assessments. The increased coefficient of variation of λEDP(z) 
could be avoided, however, by using ε-based record selection rather than random 
selection and an IM that includes ε [Baker and Cornell 2006a]. 
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The results from this section suggest that use of a vector-valued IM consisting of 
Sa(T1) and RT1,T2 does not desensitize the analysis to the effects of ε. Although ε and 
RT1,T2 are both effective IM parameters because they are related to spectral shape, they 
describe somewhat different properties of the shape of the spectrum. Further, these two 
parameters have different effects on estimated drift hazard curves: a vector IM with RT1,T2 
tends to reduce the uncertainty in the curve relative to results obtained with a scalar IM, 
while a vector IM with ε tends to eliminate a bias in the drift hazard. The parameter ε 
should thus still be accounted for, as its effect is significant, especially at large levels of 
response.  
 

9. Conclusions 

Methods for selecting and using efficient vector-valued ground motion intensity 
measures have been presented. Two IM parameters were given primary consideration: 
elastic spectral acceleration, Sa(T1), and a measure of spectral shape, RT1,T2 = Sa(T2) / 
Sa(T1). The period T1 was fixed as the first-mode period of the structure considered, and 
methods for identifying a useful T2 were considered here. The first method was based on 
scaling ground motions to the target level of Sa(T1) and using regression on RT1,T2 to 
predict the response of the structure. The optimal T2 for use in the vector was then chosen 
by minimizing the standard deviation of the prediction errors. It was shown that when 
chosen effectively, RT1,T2 can reduce the standard deviation of the prediction errors by up 
to 60% when compared to prediction using Sa(T1) alone. A variety of nonlinear MDOF 
structures were tested to find the optimal second period for use in this IM. When the 
building response was linear or when nonlinear building response has a significant 
contribution from the second mode of vibration, the optimal second period for use in 
RT1,T2 is often approximately equal to the second-mode period of the building. When 
Sa(T1) was large enough to cause nonlinear behavior and second-mode response was not 
critical, the optimal second period was larger than the first-mode period of the building. 
As a rule of thumb, a T2 equal to twice the level of the elastic first mode period agrees 
reasonably with the results seen here, and is consistent with similar conclusions by other 
researchers [Cordova et al. 2001]. 

A second method for evaluating vector IMs, which utilizes bootstrap replications of 
the drift hazard curve, was also presented. This method has the advantage of directly 
computing the statistical variability in estimates of the drift hazard curve, and it accounts 
for the increased prediction efficiency of both collapse and non-collapse responses at 
many IM levels simultaneously. A disadvantage of this approach is that it requires a 
vector-valued ground motion hazard calculation for each candidate IM, and it also 
requires slightly increased computational time. Because of this, it is suggested that the 
regression analysis method be used to narrow down a broad range of potential vector IMs 
to a few promising candidates. The bootstrap method can then be used to examine these 
few in detail.  
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A three-parameter IM consisting of Sa(T1), RT1,T2 and ε was considered to determine 
whether RT1,T2 accounted for the effect of ε—a ground motion parameter identified in 
recent research as being important. It was seen that RT1,T2 does not fully account for the 
effect of ε, and that neglecting ε in analysis results in conservative estimates of the annual 
rate of exceeding a given maximum interstory drift ratio, especially at large levels of 
structural response. Although the parameter RT1,T2 produces significant increases in 
estimation efficiency, it apparently is not able to account for the effect of ε.  

A vector-valued intensity measure consisting of Sa(T1) and RT1,T2 has the potential to 
produce a drift hazard curve with significantly narrower confidence bands than the 
equivalent curve computed using the scalar intensity measure Sa(T1) and the same 
number of nonlinear analyses. Analyses performed here indicate the potential for a 
reduction in the standard deviation of λEDP(z) of as much as a factor of two. This implies 
that in principle, the required number of analyses could be reduced by a factor of as much 
as four without increasing the standard deviation of the λEDP(z) result.  

The subjects of vector-valued IMs, estimates of uncertainty in λEDP(z), and record 
selection with respect to ε are all relatively new. The joint effects of these topics, such as 
λEDP(z) estimation uncertainty when ε-based record selection is used, require further 
study. 
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Table 1. Element properties used for the 20 generic frame structures considered. The parameters are defined as 
follows [Ibarra 2003]: T1 is the period of the first mode of vibration, δc/δy is ductility capacity (displacement at 

peak strength divided by yield displacement), αc is post-capping stiffness, and γs,c,k,a quantifies the rate of 
(hysteretic-energy-based) deterioration. All structures have a post-yield stiffness of 0.03 times the elastic 

stiffness and a peak-oriented hysteretic model. 

Number of 
stories T1 δc/δy αc 

Cyclic 
deterioration 
parameters 

3 0.3 4 -0.1 γs,c,k,a=∞ 
3 0.3 4 -0.5 γs,c,k,a =50 
3 0.3 ∞ - γs,c,k,a=∞ 
3 0.6 4 -0.1 γs,c,k,a=∞ 
3 0.6 4 -0.5 γs,c,k,a =50 
3 0.6 ∞ - γs,c,k,a=∞ 
6 0.6 4 -0.1 γs,c,k,a=∞ 
6 0.6 4 -0.5 γs,c,k,a =50 
6 0.6 ∞ - γs,c,k,a=∞ 
9 0.9 2 -0.1 γs,c,k,a=∞ 
9 0.9 4 -0.1 γs,c,k,a=∞ 
9 0.9 6 -0.1 γs,c,k,a=∞ 
9 0.9 4 -0.5 γs,c,k,a =50 
9 0.9 ∞ - γs,c,k,a=∞ 
9 1.8 4 -0.1 γs,c,k,a=∞ 
9 1.8 4 -0.5 γs,c,k,a =50 
9 1.8 ∞ - γs,c,k,a=∞ 
15 3 4 -0.1 γs,c,k,a=∞ 
15 3 4 -0.5 γs,c,k,a =50 
15 3 ∞ - γs,c,k,a=∞ 
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Table 2. P-values for tests of significance of ε, given Sa(T1) and RT1,T2. Tests were performed using the generic 
structures with the following parameter values: δc/δy=4, αc=-0.1 and γs,c,k,a=∞ (see Table 1). Linear regression 
tests were only performed when at least 10 records did not cause collapse. Logistic regression tests were only 

performed when at least 5 records caused collapse and at least 5 records did not cause collapse. Tests indicating 
statistical significance (p<0.05) are marked in bold, and ‘-’ indicates that the test was not performed. 

 Linear regression  Logistic regression 
Number of 

stories  3 6 9   3 6 9  3 6 9  3 6 9 

T1  0.3 0.6 0.9  
 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 

T2 for RT1,T2  T1/3  
 T1*2 T1/3 T1*2 

                 
Rμ        0.5 0.61 0.97 0.97  0.87 0.00 0.00 - - -  - - - 

1 0.61 0.97 0.97  0.87 0.00 0.00 - - -  - - - 
1.5 0.02 0.15 0.57  0.03 0.01 0.00 - - -  - - - 

2 0.05 0.02 0.93  0.03 0.02 0.00 - - -  - - - 
2.5 0.41 0.03 0.64  0.31 0.11 0.03 - - -  - - - 

3 0.24 0.05 0.88  0.18 0.25 0.06 0.25 - -  0.52 - - 
3.5 0.77 0.14 0.13  0.59 0.59 0.03 0.05 - -  0.06 - - 

4 0.62 0.19 0.04  0.45 0.07 0.08 0.09 - -  0.12 - - 
4.5 - 0.07 0.04  - 0.01 0.15 0.03 - -  0.03 - - 

5 - 0.74 0.12  - 0.27 0.46 0.01 0.07 0.11  0.02 0.04 0.67 
5.5 - 0.91 0.16  - 0.67 0.32 0.04 0.04 0.07  0.03 0.02 0.61 

6 - 0.45 0.06  - 0.41 0.16 0.07 0.14 0.16  0.07 0.08 0.97 
7 - - 0.60  - - 0.59 - 0.11 0.06  - 0.11 0.38 
8 - - -  - - - - 0.16 0.06  - 0.87 0.30 
9 - - -  - - - - 0.17 0.23  - 0.97 0.37 

10 - - -  - - - - 0.05 0.18  - 0.15 0.40 
11 - - -  - - - - 0.05 0.59  - 0.15 0.91 
12 - - -  - - - - - 0.86  - - 0.26 
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Figure 1: Calculation of RT1,T2 for a given response spectrum. 
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Figure 2: An example of prediction of the probability of collapse using logistic regression applied to binary 

collapse/non-collapse results (Sa(T1) = 0.9g). 
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Figure 3: Comparison of the effectiveness of RT1,T2 with two potential T2 values, evaluated for response results 
from the primary structure of interest with records scaled to Sa(T1)=0.3g. (a) a T2 choice with high efficiency, 

and (b) a T2 choice with low efficiency. 
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Figure 4: Fractional reduction in dispersion vs. T2/T1 for Sa(T1)=0.3g.  
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Figure 5: Fractional reduction in dispersion vs. T2/T1 for three levels of Sa(T1). 
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Figure 6: Optimal T2/T1 versus Sa(T1), compared periods for equivalent linear systems suggested by Kennedy 

[1985] and Iwan [1980]. 
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Figure 7: Optimal T2/T1 for four groups of structures: (a) three-story structures dominated by first-mode 

response, (b) six- and nine-story structures with moderate contribution from second-mode response, (c) nine- 
and fifteen-story structures with significant contribution from second-mode response, and (d) nine-story 

structures with varying levels of element ductility.  
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Figure 8: Maximum interstory drift hazard curves computed using the scalar IM Sa(T1) and a vector IM 

incorporating Sa(T1) RT1,T2. 
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Figure 9: Example bootstrap replicates of the vector IM drift hazard curve, illustrating how the distribution of 

estimated exceedance rates is computed.  
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Figure 10: Coefficient of variation (C.O.V.) of estimated exceedance rates versus maximum interstory drift ratio 

with a scalar IM and three candidate vector IMs.  
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Figure 11: Maximum interstory drift hazard curves computed using the scalar IM Sa(T1) and vector IMs 

incorporating Sa(T1) and RT1,T2, ε, or both.  
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Figure 12: Conditional standard deviation of lnSa(T) given IM, for three IMs.  
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Figure 13: Coefficient of variation (C.O.V.) of estimated exceedance rates versus maximum interstory drift ratio 
for drift hazard curves computed using the scalar IM Sa(T1) and vector IMs incorporating Sa(T1) and RT1,T2, ε, or 

both.  

 


